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Surface oscillations of electromagnetically 
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(Received 12 November 1993 and in revised form 19 April 1995) 

We investigate the oscillation spectrum of electromagnetically levitated metal droplets. 
In the case of electromagnetic levitation, gravity is compensated by a Lorentz force, 
which is generated by an external current. The oscillation spectrum contains in- 
formation about the thermophysical properties of the liquid metal, namely surface 
tension and viscosity. For a correct interpretation of these spectra the influence of 
the external forces on the frequencies and the damping of the surface waves must be 
well understood. The external forces deform the droplet; so that the static equilibrium 
shape is aspherical. For a perfect conductor the effect of the Lorentz force and gravity 
on the oscillation spectrum is calculated for an arbitrary magnetic field and arbitrary 
values of the viscosity. The high Reynolds number limit is evaluated. Explicit results 
are obtained for a linear magnetic field, which describes the experimental situation 
well. 

1. Introduction 
Surface oscillations of liquid droplets have been investigated with respect to very 

different subjects (Collins, Plesset & Saffren 1974). In 1879 Lord Rayleigh calculated 
the oscillation spectrum of a force-free and inviscid liquid droplet around its spherical 
equilibrium shape. The surface eigenmodes have the geometry of pure spherical 
harmonics and are (21 + 1)-fold degenerate. The frequencies are 

with the density p, radius a and surface tension y. The Rayleigh frequencies V R ( ~ )  

are proportional to the square root of the surface tension. This suggests the idea of 
measuring the surface tension via the frequencies of an oscillating droplet. Because 
the viscosity p was neglected, the surface modes are not damped in the calculation of 
Lord Rayleigh. 

In 1961 Chandrasekhar calculated the viscous damping of a force free oscillat- 
ing droplet. Now the complex frequencies 0 of the eigenmodes are the roots of 
transcendental equations : 

(&l + 2)(1- 1) + 0 2  1 
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with 
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where the J i  are the Bessel functions of order i. Because of the spherical symmetry the 
spectrum is still degenerate. Chandrasekhar evaluated this condition for low and for 
high Reynolds numbers. The intermediate regime was investigated by Suryanarayana 
& Bayazitoglu (1991b). In the high Reynolds number limit, which follows from 
Re = a2/c2 --+ co, the complex frequencies are 

(3) 
P o(l) = -&i2nvR(1) + Tc,  Tc = --(1 - 1)(21+ 1). 

Pa2 

The damping of the modes is proportional to the viscosity of the liquid. This suggests 
the idea of measuring the viscosity from the damping of the surface modes. 

In the case of electromagnetic levitation a Lorentz force is generated by an external 
current compensating gravity (Okress et al. 1952; Lohofer 1989, 1993). For levitation 
an inhomogenous electromagnetic field is required. It is not justified to neglect these 
strong forces. 

In the liquid state the shape of the droplet is aspherical due to gravity and Lorentz 
force. About this equilibrium shape surface oscillations can be observed. Warham 
(1988) used a Lagrange formalism to study the influence of the external forces on 
the oscillation spectrum of an inviscid, electromagnetically levitated metal droplet. 
Cummings & Blackburn (1991) treated the same subject directly from the equations 
of motion. A closely related work was published by Suryanarayana & Bayazitoglu 
(1991~). The metal was assumed to be a perfect conductor. The static equilibrium 
shape of the droplet was investigated analytically (Cummings & Blackburn 1991) and 
numerically (Schwartz et al. 1993). Because the external forces destroy the spherical 
symmetry the degeneracy in the oscillation spectrum is removed. The geometry of 
the surface eigenmodes has changed, i.e. they are no longer pure spherical harmonics. 
The frequencies of the oscillations are solutions of a coupled set of equations: 

where tim are the coefficients of the different spherical harmonics and the summation 
convention is adopted. The summation convention means that summation is per- 
formed for every index appearing twice. The matrix M, which follows from equation 
2.57 of Cummings & Blackburn (1991), describes the influence of the external forces. 
We will neglect the off-diagonal elements of M as Cummings & Blackburn did, be- 
cause they give only higher-order corrections to the perturbation analysis which will 
be performed. 

Besides this the oscillation spectrum may be affected by a rotation of the droplet. 
This effect, which was studied by Busse (1984), will not be taken into account here. 

In this paper we present a calculation of the oscillation spectrum of electromag- 
netically levitated viscous metal droplets, and for the first time viscosity and external 
forces are both taken into account. The work is closely related to that of Chan- 
drasekhar (1961) and Cummings and Blackburn (1991). In practice, the rotational 
part of the Lorentz force will drive a laminar and stationary or a turbulent motion 
of the fluid (Sneyd & Moffat 1982; Mestel 1982). This motion is not related to the 
surface oscillations. Because we want to investigate these surface oscillations and 
avoid the computational problems associated with the stationary motion we assume 
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the metal to be a perfect conductor, as others did (Warham 1988; Cummings & 
Blackburn 1991; Suryanarayana & Bayazitoglu 1991~).  Then the skin depth is zero 
and the magnetic field cannot penetrate the droplet. Without a driving force no 
stationary motion is generated and the surface oscillations occur around a static 
equilibrium. It should be mentioned, however, that the perfect conductor approxi- 
mation is difficult to justify. For a liquid metal the skin depth 6 is calculated from 
6 = [2/(p~oicw)]'/~ (Jackson 1962), where IC is the conductivity and o is the frequency 
of the magnetic field. With ic x 0.05 (pQ)-' cm-' for liquid Cu at the melting point 
(Iida & Guthrie 1988), v = 440 kHz (Sauerland, Lohofer & Egry 1993) we obtain 
6 NN lOP4m. For a droplet radius of a = 3 x 10P3m the ratio 6 / a  x 0.1 is relatively 
large for an expansion parameter to be considered only up to the zeroth order. 
The perfect conductor approximation is supported by the numerical investigation of 
El-Kaddah and Szekely (1983). 

The magnitude of the static deformation depends on the ratio of the Lorentz force 
and the surface tension. For levitation of a l g  metal droplet a magnetic field of 
approximatly 10-2T is required. For such a field strength the ratio of the magnetic 
pressure B 2 / 2 p ~  acting on the surface (Shercliff 1965) and the surface tension pressure 
?/a ,  with y NN 1 Nm-', is B2a/2p0y x 0.1. The ratio between the pressure contribution 
due to gravity and to surface tension is of the same order, because gravity and 
Lorentz force compensate each other. Therefore we expect the deformation to be in 
the range of a few percent of the spherical radius. The ratio B2a/2p0y is in fact the 
expansion parameter of the perturbation analysis. This ratio enters the calculation 
through the required pressure equilibrium at the surface. To make the expansion 
parameter visible throughout the whole calculation we introduce a formal expansion 
parameter E by setting B2/,uo + e B 2 / p o  and g + E g .  Calculating the spectrum of the 
surface oscillations to first order in E is the same as calculating it to first order in 
the external forces. The final result is obtained by setting E = 1. It follows that the 
external forces must be calculated for oscillations around the spherical shape only, 
because the static deformation will be proportional to E, too. Pressure, stress tensor 
and surface tension must be evaluated for oscillations around the aspherical shape. 

We investigate this for an arbitrary magnetic field and arbitrary values for the 
viscosity. For surface oscillations on liquid metal droplets the Reynolds number Re 
is high. As a typical velocity in the problem we choose the velocity associated with 
the 1 = 2 modes from Rayleigh's formula (1). From 

we obtain with a density p x 5gcmP3 and a viscosity p x 1 mPas a Reynolds 
number Re x lo4. Therefore we investigate the high Reynolds number limit. As an 
explicit realization we study the case of a linear magnetic field, as did others before 
(Cummings & Blackburn 1991; Suryanarayana & Bayazitoglu 1991a), because it is a 
good approximation to the experimental situation (Sauerland 1993). 

The paper is organized as follows. In $2 the equations and boundary conditions 
that constitute the problem are presented. In the following $3 we list the required 
results, that were derived by Cummings and Blackburn (1991). These are the magnetic 
pressure and the static deformation. The flow field is related to the pressure oscilla- 
tions, which occur as a consequence of the surface oscillations, through the boundary 
conditions on the tangential components of the stress vector in $4. With this and the 
boundary condition on the normal component of the stresses acting on the surface, 
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the dynamic pressure is related to the amplitude of the surface oscillation in 95. The 
results are put into the kinematic boundary condition in the next section (96) to yield 
an eigenvalue equation for the complex frequencies of the surface modes. The high 
Reynolds number limit is evaluated in 97, where explicit results for the frequencies 
and the damping are derived for an arbitrary magnetic field. The above-mentioned 
case of a linear magnetic field is evaluated in 98. We conclude with a short discussion 
(99). 

2. Formulation of the problem 
In the perfect conductor approximation the problem splits into two parts, which 

can be solved as follows. First the magnetic field and from this the magnetic pressure 
must be calculated. Because the magnetic field vanishes inside the droplet we write 

B(r) = Bo(r)H(F(r))  ( 5 )  

( 6 )  

with 

W )  = r - 41 + ([Im + R1,) Ylrn(Q)), 
where H ( x )  is the step-function and F ( r )  = 0 is the surface of the droplet. Here 
and in the rest of paper we used spherical coordinates ( r ,  0, q) and dfi is the usual 
abbreviation for the differential sin( @)dOdq. The coefficients RI, are the amplitudes 
of the static deformation and the coefficients <lrn  are the amplitudes of the dynamic 
deformation. 0 is the angle from the z-axis, which is chosen antiparallel to the 
direction of the gravity vector. The current density j ( r )  vanishes outside the droplet. 
Hence it follows from 

that the magnetic field must satisfy 
v x B(r)  = POj@), 

V x B,,(r) = 0 

P o j k )  = W ( 4 ) V H r )  x B&), 

(7) 

(8) 

(9) 

where 6(x) is the Dirac &function. From this it follows that the Lorentz force density 

F L = j x B  (10) 

V * B = O  (11)  

and that the current density is given as a surface current density 

is zero everywhere except on the surface. From 

follows the continuity of the normal component of the magnetic field across the 
surface and hence, because of (5 ) ,  the normal component vanishes on the surface 

(12) BO * nlF,o = O, 
where 

is the unit normal vector directed outwards. The magnetic field is completely deter- 
mined through equations (8), (11)  and (12). From (9) and (12) it follows that the 
Lorentz force is always directed normal to the surface and hence can be written as a 



Surface oscillations of electromagnetically levitated viscous metal droplets 345 

magnetic pressure (Cummings & Blackburn 1991) 

pushing from outside against the surface. 

(Chandrasekhar 1961) 
The fluid velocity u is described by the Navier-Stokes equation 

du 
P- dt =--Epge,+V.T-vp 

where p is the pressure, p is the density and g is the constant gravitational acceleration. 
The hydrodynamic stress tensor for an incompressible fluid is defined as 

with the viscosity p.  The continuity equation is 

v - u  = 0. (17) 

The boundary conditions on a free surface require that the normal and tangential 
forces acting on the droplet surface vanish. Besides the hydrodynamical forces, which 
are expressed through the hydrodynamic stress tensor, we must consider the surface 
tension y, gravity and the magnetic pressure. The stress t 6 S  exerted on a surface 
element 6s with unit normal n is expressed through the stress tensor (Acheson 1990) 

t = T.n -pn .  (18) 

Because the surface tension force and the magnetic pressure are directed normal to 
the surface we obtain for the normal component of the boundary condition 

(19) 

t o - t = o ,  t , . t = o ,  (20) 

- t nl~,o = P M A G  + yv * n. 

The boundary conditions on the tangential components of the stress vector are 

with the tangential vectors defined as 

with 

When the droplet is oscillating the velocity field must satisfy the kinematic boundary 
condition, which can be derived from (Acheson 1990) 

From the above equations the pressure, the velocity field and the static deformation 
can be derived. One cannot derive an equation of motion for the surface in the 
viscous case. Instead we proceed similar to Chandrasekhar (1961) by assuming an 
exponential time dependence - exp(-ot) for the motion and obtain a condition on cr. 
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3. Magnetic field, magnetic pressure and hydrostatic equilibrium 
For completeness and easy reference, we briefly summarize the results for the 

magnetic field, magnetic pressure, hydrostatic pressure and static deformation. These 
quantities are not affected by the viscosity and hence are the same as in the work of 
Cummings & Blackburn (1991). 

From equations (8) and (11) it follows that the magnetic field can be derived from 
a scalar magnetic potential 4, which satisfies the Laplace equation: 

A.  Bratz and I. Egry 

B = V4,  A 4  = 0 (24) 

Hence we make the following ansatz for the magnetic potential: 

The coefficients H I ,  describe the external magnetic field, the coefficients 11, the 
induced magnetic field. For the spherical harmonics we use the definition given in 
Butkov (1968). As the induced field depends on the shape of the droplet it will 
change during the course of an oscillation. For small deformations the induced 
field may be expanded in powers of the deformation. The dynamic deformation is 
an infinitesimal quantity. It is not proportional to the expansion parameter E ,  but 
an artifically introduced infinitesimal amplitude, as usual in the stability analysis of 
hydrodynamics (Chandrasekhar 1961). The static deformation is proportional to the 
perturbation parameter e because it is generated by the external forces. To first order 
in the deformation, static or dynamic, we can write 

where 1;;' is the induced magnetic field for a spherical droplet and 1;;) the magnetic 
field induced by the deformation. The induced magnetic field follows from the 
boundary condition (12). The surface normal n is to first order in the deformation 

From this equation one obtains (Cummings & Blackburn 1991) for the expansion 
coefficients of the induced magnetic field 

for the zeroth order, and 

for the first order. The expression in angular brackets stands for the integral 

(dellmluu) = dQ Y:(Q) Yl"(Q) Y:(Q) (30) s 
over a triple product of spherical harmonics. The arguments of the angular brackets 
must be considered as indices that obey the summation convention. 

After the magnetic field is calculated to first order in the surface deformation, we 
now must look for the magnetic pressure. It was expanded in spherical harmonics 
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and one obtains for the zeroth order in the deformation 

and 

with the matrix 
(32) (1) 

pMAG,lrn = mlrn,uv ( 5 u u  + Ruu)  7 

(21 + 1)(2u + 1) 
(u  + 1)(1+ 1PPO 

HIrnHuu mrs,xz = E. 

x [(rslxzlde)(deluvllm) ( d ( d  + 1) - u(u + 1) - l (1  + 1)) 
+(rsllmlde)(delxzluv) (1 (1+  1) + d(d + 1) - r(r + 1)) 
x(2d + 2)-' ( d ( d  + 1) + U ( U  + 1) - X(X + I))] (33) 

for the first-order magnetic pressure expansion coefficients. The total magnetic 
pressure is given by the sum of (31) and (32). 

The expression for the magnetic pressure must now be inserted into the hydrostatic 
pressure equilibrium to find the static equilibrium form of the droplet. When the 
velocity field is zero everywhere, the hydrodynamic flow equation simplifies to a 
time-independent equation for the static pressure ps  : 

(34) 0 = -Vp - cpge,. 

(35) 

S 

From this the static pressure inside the droplet is 
S p = po  - cpgr cos(0). 

The surface tension force on the deformed surface is to first order in the static 
deformation RI, 

(36) 2Y Y y V . n  = - + -RhlYLrn(l(l + 1) - 2). 
a a  

Expanding the static pressure (35) on the deformed surface to first order in the static 
deformation and making use of the orthogonality of the spherical harmonics, we 
obtain from equation (19) 

2Y 
(4n )"2~0drs ,~  - (4n)'/2--rs,m = ~ p g a ( 4 n / 3 ) ' / ~ 6 ~ , i o  a 

Y + P ~ A G , ~ ~  + iars,xz(r(r + 1) - 2 ) ~ x z  + ~ r s , x z ~ x z 7  (37) 

(38) 

(39) 

with 

Mr,x  = ~ p g a ( 4 n / 3 ) ' / ~  (rsIxzl10) + mrs,xr, 

6.. IJ,lk - - 6. 1,I 6 .  J k  * 

This pressure equilibrium consists of three parts. The left-hand side of equation (37) 
represents the situation without external forces (g = 0,B = 0). In the absence of 
external forces it is clear that the equilibrium shape of the droplet is spherical and 
the pressure is given by 

(40) 
2 

Po = Y - .  a 
In the presence of gravity the magnetic pressure must compensate the gravity force. 
The zeroth-order magnetic pressure pEAG and the pressure contribution from gravity 
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depend on the angles 0 and cp differently in general. Hence equilibrium can be 
established only by a deformation. To first order in E one obtains 
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equation (41) guarantees only hydrostatic equilibrium. Mechanical equilibrium can 
only be achieved if the magnetic field compensates the gravitational field and provides 
a restoring force for deviations of the droplet's centre of mass from its equilibrium 
position. This puts a condition on the coefficients H I ,  contained in equation (41) via 
the magnetic pressure term. In the case of a linear magnetic field, this condition is 
given explicitly in equation (87). 

4. Fluidflow 
In the case of an inviscid liquid, it was not necesarry to consider the fluid flow 

explicitly (Cummings & Blackburn 1991). In the present case of a viscous liquid, the 
boundary conditions require an investigation of the fluid flow. 

4.1. Nauier-Stokes equation 
The flow field is calculated from the Navier-Stokes equation. The linearized Navier 
Stokes equation for an incompressible liquid in a gravity field reads 

au 
at 

p- = -vp+  pAu - Epge,. 

It follows from the incompressibility that the velocity field u can be written as a sum 
of a poloidal S and a toroidal field Q, as defined by Chandrasekhar (1961): 

u = S + Q .  (43) 

The definition of the poloidal and toroidal fields is 

(44) 
Y r 
r r 

S = V x V x - S ( v , t ) ,  Q = V x -Q(r , t ) .  

For the potentials S(Y, t )  and Q(Y,  t) we perform a separation ansatz 

S(Y, t )  = S l m ( r ,  t )Ylm(a), Q(Y, t )  = Q l m ( r ,  t)Yjm(Q). (45) 

To obtain a solution for the poloidal and the toroidal potentials we assume an 
exponential time dependence S I ,  - e-"' and Qlm - ecUt of the potentials with 
complex 0. The pressure satisfies the Laplace equation and may be expanded as 

p = almYIY1m,  (46) 

with expansion coefficients aim. From the Navier-Stokes equation, the exponential 
time dependence and the expansions in spherical harmonics for the poloidal and 
toroidal potential and the pressure, we obtain for the potentials 

(47) 

and 

Qim(x)  = q l m x  c j l ( x ) ,  (48) 
where x = r / c ,  c = [ p / ( ~ p ) ] ' / ~  and slm and qlm are expansion coefficients to be 

arm xi+ic i t i  

P 4 l +  1) 
= Slmx c j / ( x )  + 
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determined from the boundary conditions. The j ,  are the spherical Bessel functions 
of order 1. No summation over 1 is performed in equations (47) and (48). 

The flow field components are explicitly 

The functional dependence of the jl and the YIm is omitted for brevity. 

4.2. The boundary conditions on the tangential stresses 

For evaluation of the boundary conditions (20) the surface tangential vectors are 
required. They are 

(52)  te = ( 5 1 m  + Rim) a, YI"'er + eo 
and 

d, Ylmer + e,. r i m  + RIm t ,  = 
sin( 0 )  (53) 

Then we obtain from equations (18), (20), (27), (52) and (53) for the boundary 
conditions up to first order in 6 

to * T - n  = Tor - RI, ToBa@Ylm + TO,- ] + TrrRa8e Y1" = 0 (54) sin( @) 

and 

a'Y1m ] + T r r R l m Y  3, yim = 0, ( 5 5 )  t , *  T a n  = Tqr - Rlm T,oa,Y? + Tqq- 
sin( 0 )  sin( 0 )  

because the static deformation is of first order in E .  T,,p are the components of the 
stress tensor in spherical coordinates. No summation is performed over the indices 
a,P. The summation convention will not be applied if the indices denote spherical 
coordinates. 

By use of these equations the expansion coefficient slm can be expressed through 
the cqm. These coefficients are dynamical quantities and hence are proportional to 
the dynamic deformation (1".  The relations between these dynamical quantities are 
required to first order in 6. We therefore write 

( 5 6 )  (0) (1) 
Slm = Slm + f S l m  

and, accordingly, for the other coefficients 

With this we obtain for the zeroth order 
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with 

C S d O  = - 

For the first order we obtain 

The coefficients Clm,u",ik and c @ ~  are defined in the Appendix. 
For the toroidal field we have 41: = 0. Because the zeroth order of the toroidal 

potential vanishes and the radial component of the toroidal field vanishes the contri- 
butions to the pressure equilibrium and kinematic boundary condition are of order e2. 
Hence the toroidal field does not affect the oscillation spectrum at the perturbation 
order considered. 

5. Pressure equilibrium 

a!! and a!; and the dynamic deformation ( l m .  The pressure equilibrium is 
From the pressure equilibrium (19) we obtain a relation between the coefficients 

PIF,o = YV * nlFE0 + pext + n * T * n. (62)  

The external pressure to first order in E is pexi = egpacos(0) + p g A G  + YlmMlm,uO<,". It 
is generated by gravity and the Lorentz force, with the matrix M defined in equation 
(38). The pressure p is defined as 

p = p + egpr cos(0), (63)  

so that the influence of the external forces is completely contained in pext .  On the 
surface 8 is to first order in e 

(64)  pIF=o = po + (a!! +fa;:) ufY!" + a~~)iaiRu,Y,"(lm~ik~uu).  

The dynamic part of the surface tension term is to first order in E 

Y Y 
y V .  n = - ( & I  + 1 )  - 2)t5,,,Ylrn + -RU,&(4 - 2i(i + 1 )  - 2u(u + l))Ylrn(lm/ik/uu). ( 6 5 )  

U U 

The contribution from the normal component of the stress tensor is 

= TrrIr=, + T:rI,=a Ruu Y,", (67)  

because the zeroth order of the stress tensor components Tre and Trq must vanish 
on r = a, if the boundary condition is to be satisfied by each order in E separately. 
T;r is the derivative of T,, with respect to r .  An explicit expression for the normal 
component of the stress vector can be derived from the expressions for s/! and si:. 
For the zeroth order we obtain 

= 
(12 + 1 - 2)a-'+' 

Irn YSlma2 - c2Drr(l,a/c)' 
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The coefficients cer,crr and Elm,u",ik are defined in the Appendix. 

6. The eigenvalue equation for the surface oscillations 

equation for cr. From equation (23) it follows that 
Finally the kinematic boundary condition is used for the derivation of the eigenvalue 

- aa<~mYlm = u * n. (70) 

The surface normal component of the velocity is 

with 

For the zeroth order in c we obtain for the normal component of the velocity 
(72) - urIF,o - urIrEa + arurlr=a a&vYl. 

Here we used the abbreviation Qi(Z, x) for the ratio of the different spherical Bessel 
functions : 

For the first order in c we obtain for the normal component of the velocity 

+Ruuaf' YlmAlm,uv,ik. (75) 

The coefficient Alm,uv,ik is given in the Appendix. 
Inserting the expressions for the normal component of the velocity (73)  and (75) 

into the kinematic boundary condition yields the required equation for the eigenmodes 

The equation for the zeroth order (73) alone gives the familiar eigenvalue equation 
derived by Chandrasekhar (1961). This can be seen directly, if another recurrence 
relation for the spherical Bessel functions 

0. 

is inserted into (73) and this into (70). This yields equation (2). 
The other known limiting case is the infinite Reynolds number limit. This is the 

approximation of an inviscid liquid as calculated by Cummings and Blackburn (1991). 
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In the following section we extend their treatment by considering the high Reynolds 
number region. 

7. High Reynolds numbers 
The kinematic boundary condition cannot be solved analytically without further 

approximation. We investigate the case of high Reynolds numbers, which means that 
the viscosity is small. For high Reynolds numbers c / a  = (p/a20p)' /2 becomes very 
small. Therefore the argument x = Y / C  of the Bessel functions becomes large and we 
need the asymptotic expansions for the Bessel functions. We evalute all contributions 
to first non-vanishing order in c/a. For the asymptotic expansion of the zeroth-order 
normal component of the velocity (73), we obtain 

Because we calculate everything to first order in E it follows from perturbation 
theory (Fetter & Walecka 1980) that only the diagonal elements of the kinematic 
boundary condition, which is a matrix equation, are required. From perturbation 
theory it follows that, for the first-order correction to the eigenvalues of the matrix 
considered, only the diagonal elements of the perturbation matrix in the unperturbed 
eigenvector system are required. This means substituting i , k  by l,m in equation (75). 
For the asymptotic expansion of the first-order normal component of the velocity the 
result is 

( u  * n) ( l )  

opa2 + 2p(22 + 1)(1 - 1) 
= I  M t m , r m S i r n  y / m  dp2a3 

613 + 51u2 + 5124 + u212 + u12 - 2u2 - 2~ + 612 - 121 
( l m l ~ u  I lm) S / m R u v  Y/m 2a20p --Y 

x (2014 + 3013 + 313u2 + 313u - 3012 + 11u212 + 11~1' - 1u2 - lu - 201 + 2u2 + 2u) 

No summation over 1 is performed in equation (78). The coeffcients (Imluu(ik} are 
given in the Appendix. 

From equations (70), (77) and (78) the eigenvalues o may be calculated. As 
we calculated everything to first order in the external forces and the viscosity, the 
eigenvalues o must be expanded similarly: 

(79) 0 = io(0) + r(0) + it.w(') + fr('). 
For zeroth order in the external forces we obtain 

w(0) = + ( y l ( 1  + 2)(1 - 1)) 1'2 
- 

a3 P 

Pa2 

for the frequencies and 
r(0) = ( 21 + 1)(1 - 1) 

for the damping constants. This is the result of Chandrasekhar (1961). 
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TABLE 1. List of coefficients {lmluullm} defined in equation (A3), and (lm/uullm) 
defined in equation (30). 

The first orders in the external forces dl) and I"') are obtained by substituting 
these results into equation (78). Instead of calculating dl), it is convenient to calculate 
the square (do) + ~ r u ( ~ ) ) ~ .  This follows from the dependence of (77), (78) and the 
kinematic boundary condition (70) on the eigenvalue D. If the kinematic boundary 
condition is multiplied with D one obtains 

y (613 + 51u2 + 51u + u21* + u12 - 2u2 - 2u + 612 - 121) R,,(lmluvllrn). 
1 -- 

2a3p 
(82) 

From the contribution to the kinematic boundary condition, which is proportional 
to p, we obtain for the damping 

-__ (813 + 12u2 + 12u - 412 - 21u - 41 - 21u2 + 2u + 2u2) R,,(lm(uvllm). 
2a2pl 

(83) 

These results are of first order in the expansion paprameter E via the static deformation 
R,, and the matrix elements Mlm,rm. Equations (83) and (82) represent the general 
solution of the problem, correct to first order in the perturbation parameter E ,  which 
will be set to one in the following. 

For the frequency, we obtain (equation (82)) the same result as Cummings & 
Blackburn (1991). This implies that there is no correction to their result to first order 
in viscosity, just as in the absence of external forces (Reid 1960). The damping due 
to viscosity of the oscillations of an aspherical droplet is given by equation (83). It 
has not been calculated before, and is the central result of our paper. 
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8. Explicit results for a linear magnetic field 
The above general formulas will now be evaluated for the special case of a linear 

magnetic field. This means that only the two expansion coefficients Hlo and H20 are 
non-zero. 

The coefficients required for the evaluation of equation (83) for a linear magnetic 
field are listed in table 1. 

The static deformation is (Cummings & Blackburn 1991) 
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For the complex frequencies CT = io + r we obtain 

and 

15 Hio 2 15 Hi0 
9 W1,o = - ~ 2 ,uoa2pn’ 4 , + 1  = -~ 

8 Poa2Pn 
8 y  1025 H:o 81 Hf0 +------- m2,+2 = 3 - -~ a p 294 poa2pn 56 poa2pn’ 
8y 2775 Hio 81 Hf0 +-- 02,kI = 3 + a p 196 poa2pn 280 ,uoa2pn‘ 
8 y  8450 Hio 27 H?, = - + -~ - -~ 

a3p  588 poa2pn 280poa2pn’ 

2 

-~ 2 

r1,kl = r1,o = 0, 

r2,+2 = - 5 + ~- - -~ 
p ( 
p ( 963H2a 3625 Hioa) 

1359 H:oa 14125 Hioa) 
a2P 896 pony 6048 pony ’ 

r2,+1 = - 5 -  -10 + _ _ ~  

99 H2 a 125 H i o a )  
a2P 896pony 6 0 4 8 ~ 0 7 1 ~  ’ 

a2P (5-112& 36 pony 
r2,o = ~ + - - .  

As mentioned above in $3, for levitation the Lorentz force must compensate gravity. 
The force balance requires F L  + Fg = 0, from which follows 

as was derived by Cummings and Blackburn (1991, equation (5.18)). The levitation is 
indeed linearly stable, because the frequencies of the 1 = 1 modes, which describe the 
oscillation of the centre of mass (equation (85)), are all real. We refer the interested 
reader to the paper of Cummings & Blackburn for details on the location of the 
droplet in the magnetic field. 

Frequencies and damping of the 1 = 2 modes can then be expressed through an 
average of the squares of the translational frequencies and the Rayleigh frequency 

- wR.  With 
(88) ( 3 2  - I  2w2 

1 - 3 ( l,*l + 4 0 ) .  
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and 

we obtain (Cummings & Blackburn 1991), using equation (87) 

2 410- 9 g 2  
w2,&2 = O R  - -a: + - 

44 1 14 a 2 3 '  

2 2 185, 9 g 2  
02,*1 = W R  + - 0 1  + --, 49 70 a 2 7  

1 6 9 0 1  3 g 2  
=a;+- w ---, 

441 70a2a: 

and hence for the average of the squares of the 

40 7 

21 

- 
Of = a; + -0, + 

For the damping the results are 

frequencies of the 1 = 2 modes 

3 g 2  -~ 

10 a 2 3 '  

r2,_f2 = rc + - p ( 2 8 2 5 3  +--), 151 g2 J pa2 567 a; 28 a20:o; 

and the average of the damping constants is 
- 

r2  = rc. (93) 

On average, the external forces have no influence on the damping of the surface 
waves. 

In figures 1 and 2 the relative changes of the frequency and damping of the 
1 = 2 modes are shown as functions of the the average translational frequency 
V I  = [3/(4n2)]1/2. As parameters we choose a radius a = 3mm and a Rayleigh 
frequency V R  = 0 R / ( 2 n )  = 40Hz. The relative change is about a few percent for 
v1 = 5Hz. Both for lower and higher translational frequencies, the influence of the 
external forces on the frequencies and damping increases. This is understood easily 
from formulas (90) and (92). 

- 

- 

9. Discussion 
We investigated the influence of gravity and Lorentz force on the damping of 

surface waves on electromagnetically levitated liquid-metal droplets. Formulas were 
derived which describe the dynamics for arbitrary values of the viscosity and arbitrary 
magnetic fields. The calculations were performed with the aid of the computer algebra 
program Maple (University of Waterloo, Canada, 198 1). The practically important 
limiting case of high Reynolds numbers and a linear magnetic field was evaluated 
explicitly. A correction of the damping due to the static deformation was found. For 
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2 

FIGURE 1. The relative change of the frequencies V Z , * ~  and their average is shown as a function 
of the average translational frequency ii for a radius of a = 3mm and a Rayleigh frequency 
V R  = [ 8 y / ( 4 n ’ p ~ ~ ) ] ’ ’ ~  of 40Hz. 

2 4 6 8 10 12 

F (Hz) 
FIGURE 2. The relative change of the damping constants r2,krn is shown as a function of the average 
translational frequency V i  for a radius of a = 3mm and a Rayleigh frequency v R  = [8y/(4n2pu3)] ’ /* 
of 40 Hz. 
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fixed 1-values the correction disappears if the average over the different m-values is 
considered. In contrast to this, the influence of the external forces on the frequencies 
does not disappear on average. For some typical values of surface tension y and 
droplet radius a, a correction to the damping of the surface waves of a few percent 
is found for realistic values of the magnetic field, which was expressed through the 
average translational frequency iji. 

We thank the Deutsche Forschungsgemeinschaft for financial support. We thank 
the referees for extensive suggestions. 

Appendix. 
The coefficient Clm,uu,ik required in equation (61) for the flow field is given by 

+D,,(i, a/c)(((lmluulik))) + D002(i, a/c){lmluvlik}. 

Here the following abbreviation was used: 

( ( (Zm~uv~ik) ) )  = 4(1(l+ 1) + u(u + 1) - i(i + l))(lrnluulik). 

The coefficients {lmluvlik} are given by 

{lmluvlik} = dQYIm J .{-- i a  
sin(@) a@ 

k cot(@) a y,"] 
[ Z y ; ] )  

yi -___- 
sin(@) aq  sin(@) d q  

+ [-- sin(@) a @ d q  

i a  1 a 2  Y-k + cot(@)-Y,i! a - 1 [+ +--([-- sin(@) 89 sin2(@) 8 9 2  ' a@ sin(@) d q  

yi + [-- sin(@) a @ d q  sin(@) d q  

The coefficients {lmluulik} required for the evaluation of the case of a linear magnetic 
field are listed in table 1. 

The coefficients Dij are given by 

21 I f 2  I+lcI+1 
Drr( l ,x )  = -= ((1 - Oa- x 



i(i - l)ui(cQ1(i, a / c )  + aQ2(i, a / c ) )  
(lmluv 1 ik)  

0p(-2(i2 - 1)c2 + (2i + l)acQl(i ,a/c) - a2Q2(i,a/c)) Alm,uu,ik = - 

Here we used the abbreviation Q i ( l , x )  for the ratio of the different spherical Bessel 
functions 

The coefficient ((lrnluvlik)) is defined by 

((lmluvlik)) = - $ ( l ( l  + 1 )  - u(u + 1) - i(i + l))(lmluvlik). (A 13) 

REFERENCES 

ACHESON, D. J. 1990 Elementary Fluid Dynamics. Clarendon. 
BUSSE, F. H. 1984 Oscillations of a rotating liquid drop. J .  Fluid Mech. 142, 1-8. 
BUTKOV, E. 1968 Mathematical Physics. Addison-Wesley. 
CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability, 2nd edn. Dover. 
COLLINS, D. J., PLESSET, M. S. & SAFFREN, M. M. (Eds.) 1974 Proc. intl Colloquium on Drops and 

Bubbles. California Institute of Technology and Jet Propulsion Laboratory. 



Surface oscillations of electromagnetically levitated viscous metal droplets 359 

CUMMINGS, D. L. & BLACKBURN, D. A. 1991 Oscillations of magnetically levitated aspherical 

EL-KADDAH, N. & SZEKELY, J. 1983 The electromagnetic force field, fluid flow field, and temperature 

FETTER, A. L. & WALECKA, J. D. 1980 Tneoretical Mechanics ofParticles and Continua. McGraw-Hill. 
IIDA, T. & GUTHRIE, R. I. L. 1988 The Physical Properties of Liquid Metals. Clarendon. 
JACKSON, J. D. 1962 Classical Electrodynamics. John Wiley & Sons. 
LOHOFER, G. 1989 Theory of an electromagnetically levitated metal sphere I: absorbed power. SlAM 

LOHOFER, G. 1993 Force and torque of an electromagnetically levitated metal sphere, Q. Appl. Maths 

MESTEL, A. J. 1982 Magnetic levitation of liquid metals. J .  Fluid Mech. 117, 2 7 4 3 .  
OKRESS, E. C., WROUGHTON, D. M., COMENETZ, G., BRACE, P. H. & KELLY, J. C. R. 1952 Electro- 

magnetic levitation of solid and molten metals. J .  Appl .  Phys. 23, 545-552. 
RAYLEIGH, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29, 71-97. 
REID, W. H. 1960 The oscillations of a viscous liquid drop. Q. Appl .  Maths 18, 86-89 . 
SAUERLAND, S. 1993 Messung der Oberflachenspannung an levitierten fliissigen Metalltropfen. 

Dissertation, RWTH Aachen. 
SAUERLAND, S., LOHOFER, G. & EGRY, I. 1993 Surface tension measurements on levitated aspherical 

liquid nickel drops. Thermochimica Acta 218, 445-453. 
SCHWARTZ, E., SAUERLAND, S., SZEKELY, J. & EGRY, I. 1993 On the shape of liquid metal droplets 

in electromagnetic levitation experiments. In Containerless Processing: Techniques and Appfi- 
cations (ed. W. Hofmeister), pp. 57-64. The Minerals, Metals & Materials Society. 

droplets. J .  Fluid Mech. 224, 395416. 

profiles in levitated metal droplets. Metall. Trans. 14B, 401410. 

J .  Appl. Maths 49, 567-581. 

11,495-518. 

SHERCLIFF, J. A. 1965 Textbook of Magnetohydrodynamics. Pergamon. 
SNEYD, A. D. & MOFFAT, H. K. 1982 Fluid dynamical aspects of the levitation melting process. J .  

SURYANARAYANA, P. V. R. & BAYAZITOGLU, Y. 1991a Effect of static deformation and external forces 

SURYANARAYANA, P. V. R. & BAYAZITOGLU, Y. 1991b Surface tension and viscosity from damped free 

WARHAM, A. G. P. 1988 Vibration of a levitated drop. N P L  Rep. DITC 110/88. 

Fluid Mech. 117, 45-70. 

on the oscillations of levitated droplets. Phys. Fluids A 3, 967-977. 

oscillations of viscous droplets. Intl J .  Thermophys. 12, 137-151. 


